HOW BETTERVIEW USES UNSUPERVISED LEARNING
To use STEGO at Betterview, we take images, break them into sections, and make variations to each section. Imagine taking a picture of a cat, and in one case, focusing on the tail and making it black and white, and in another case, focusing on the head and leaving it in color. We know that these different image patches represent the same object, so we can put them through a neural network that will find similarities and begin to understand the object as a whole. Then, we train it to find similarities between different parts of the same image and differences with other images. After enough training, it is efficient at finding objects and similar images on its own.